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Abstract--Tbe simple physical model of foam drainage suggested previously by the authors is developed. 
A non-linear partial differential equation is obtained to describe foam syneresis (drainage process). Special 
kinds of its solutions in the form of a travelling wave are analysed. It is proved that for such types of 
solutions the right boundary condition cannot equal zero. A possible explanation for this restriction is 
suggested. In the authors' opinion, the main reason for this unexpected result is the peculiarity of the 
Plateau-Gibbs borders form: a cross-section of the Plateau triangle cannot be equal to zero under any 
variation of foam parameters. In mathematical terms this is reflected in the appearance of a square root 
singularity in the evolutionary equation that leads to the conclusion made. Qualitative comparison with 
recent experimental data is presented. It proves the principal conclusion obtained by the authors. 
Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Gas-liquid foam is presented in a variety of two-phase dispersion systems. It differs from other 
widespread and relatively well-studied gas-liquid media by high (near to unity) gas content and 
the presence of some quasi-ordered structure. These two distinctive factors provide foam with 
a number of unique properties distinguishing it from gas-liquid mixtures with small gas 
content. 

In past decades, unique properties of gas-liquid, solid and three-phase foams were discovered 
and many groups of scientists and engineers tried to apply them to a variety of industrial problems. 
The number of publications devoted to these problems is very large and any list that could be 
presented in this brief paper would be incomplete. A brief review of such attempts can be found 
in the papers by Aubert et al. (1989) and Kouloheris (1987). 

The present research had at least two main motivations. The first was to try to control the process 
of foam polymerization. It is well known that polymeric foams are used widely in the building 
industry, agriculture and recultivation of "dead" grounds, and even for the aims of thermal 
insulation of the soil in permafrost regions. During the polymerization process (as the foam 
hardens), there is a hydrodynamic process of foam destruction--under the influence of gravitation, 
the polymeric liquid flows from the elements of foam internal structure (foam syneresis) and the 
emerging polymeric foam loses its quality. It can be seen that foam syneresis is the process that 
controls the quality of polymerization and, as a consequence, the quality of ready polymeric foam. 
To study this possibility of controlling the foam polymerization process, the internal 
hydrodynamics of foam should be investigated. 

The other reason for this research is the idea of using special types of polymeric foam for oil 
absorption from polluted surfaces (liquid or solid). It is well known that oil spillage is one of the 
most serious ecological problems, and using dry polymeric foam may be one of the possible ways 
to solve it---dry foam with an extended internal surface covers a spill and absorbs the oil. The 
peculiarities of oil absorption are defined by the internal structure of the foam, by the regime of 
the combined flow of liquid and oil through the system of foam pores and by the interaction of 
this flow with the hard skeleton of the foam. 
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The number of publications devoted to internal foam hydrodynamics investigations is very large 
and we are obviously unable to mention most authors who have dealt with this problem. Only such 
papers will be cited in our brief review whose approach to the problem under investigation is similar 
to ours. 

The first measurements of the flow rate of liquid passing through foam were conducted by Miles 
et al. (1944). Leonard & Lemlich (1965) calculated the numerical coefficient for the Pouaseuille flow 
in Plateau~Gibbs borders which was used later by many researchers, and, in particular, by Kann 
(1984, 1986), who made a great contribution to the development of the syneresis theory. In 
particular, he suggested to characterize the foam's ability to drain by the hydroconductivity 
function. He derived expressions for this function for a variety of foams (monodispersive 
polyhedral, spherical, polydispersive, etc.) and suggested the introduction of a new parameter, the 
minimal expansion factor, to characterize the peculiarities of liquid flow through sufficient 
polydispersive foam. The generalization of the results obtained by him is presented by Kann 
(1989). The present work is largely based on the theoretical models and assumptions developed 
by him. 

Krotov published a series of works devoted to foam internal hydrodynamics and independently 
obtained some results which were also obtained by Kann with his colleagues. In his paper, Krotov 
(1982) obtained and investigated an evolutionary equation describing foam syneresis in the 
framework of a so-called model of closed capillaries. He showed that there is an analogy between 
the model equation obtained by him and the equation of the isothermal hydrodynamics of viscous 
compressible gas in a vertical capillary. He studied the model equation and solved it for some simple 
cases. 

Bychkov et al. (1982) investigated the syneresis of gas-liquid foam, taking into account the 
phenomenon of liquid flow from the foam films to the Plateau-Gibbs borders. To describe the 
drainage process they obtained a non-linear equation connecting volumetric moisture content 
(liquid volume in Plateau borders relative to liquid volume in foam) and dimensionless time and 
analysed its solutions numerically. The equation obtained contains one dimensionless parameter, 
only depending on structural characteristics of the foam and on properties of the foaming agent. 
The authors present their own explanation for the experimental results devoted to the stability of 
foam obtained by the addition to the foaming solution of fat spirits on the basis of the analysis 
of the equation results. 

Malhotra & Wasan (1987) took into account the phenomenon of disjoining pressure in 
foam films and analysed numerically its effect on drainage times. They restricted themselves to 
the values of film sizes where this effect is sufficient and came to the conclusion that despite 
the uncertainty of Hamaker's constant definition, the model which takes this mechanism into 
account fits the available experimental data better than that without consideration of this 
phenomenon. 

Fortes & Coughlan (1994) suggested a model in order to study both the drainage process and 
the effect on the foam of the continuous addition of liquid from the top of the column containing 
foam. The model associates the Plateau borders and quadruple junctions are identified with 
vertically stacked pools that are connected by channels through which the liquid drains. Equations 
have been derived for the flow of liquid through the channels and pools. These have been 
numerically integrated and the results obtained have been compared to the standard drainage 
curves for liquid foams and to the results presented by Weaire et al. (1993). The authors came to 
the conclusion that their model shows remarkable similarities to experimental results and suggested 
potential areas of further investigation. 

Recent progress in this direction is connected with the works conducted by Weaire and his 
collaborators. Of great interest is a series of their recent works containing both theoretical models 
and experimental data proving their predictions. Verbist & Weaire (1994) came independently to 
the same physical model that was suggested by Goldfarb et al. (1988) and obtained almost the same 
evolutionary equation for describing syneresis in polyhedral foam (there is a small difference in 
a numerical coefficient). Weaire et al. (1995) presented preliminary experimental results proving 
qualitatively the existence of a solitary wave with a profile predicted on the basis of the theory 
developed (determination of the local liquid moisture fraction was based on electroconductivity 
measurements). 
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2. MODEL 

The arbitrary polyhedral foam structure consists of convex polyhedrons of various shapes and 
dimensions and of plane-parallel films separating them. The restrictions to real polyhedral 
structures were considered by Plateau (1973) on the basis of thermodynamic relationships. Later 
these were formulated in two rules named after him. Real foams have a rather complex irregular 
structure, a strict mathematical description of which is very difficult. Different idealized models of 
foam structure are used for the analysis of processes of different physical nature. At present, the 
polyhedral foam model is widespread and generally used (Manegold 1953; Kann 1989). This model 
assumes that the foam structure satisfies the following simple rules: (1) the three verges forming 
equal dihedral angles of 2r~/3 between each other converge in the edges of the polyhedron; (2) four 
edges, oriented at equal angles to each other, converge at one node; (3) gas bubbles have the 
polyhedron form with obtuse edges and vertices; (4) the polyhedrons are divided by thin 
plane-parallel liquid films; (5) at the point of junction of three films there exist channels (capillaries) 
in the Plateau triangle form (plane figure bounded by three pairwise tangential circumferences of 
the same radius). The capillaries formed at the juncture of the three films are called Plateau-Gibbs 
channels. The dodecahedron is used as a shape of the elementary foam cell as the most suitable 
pattern. The elements of the foam cell are shown schematically in figure 1. 
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Figure 1. Elements of  the idealized polyhedral foam structure. 1. Plateau triangle; 2. Plateau-Gibbs 

channel; 3. foam cell (dodecahedron) side. 



994 v.  GOLDSHTEIN et al. 

For the simplification of the problem considered, let us assume that all liquid is concentrated 
in the Plateau~Gibbs channels and that the liquid motion in the films can be neglected. This does 
not restrict the general physical model of the phenomenon, but permits us to define most clearly 
the basic physical processes determining the creeping flow regimes in foam. It is well known that 
the relationship between gas pressure and liquid pressure for the Plateau~Gibbs channel side 
surface with perfect cylindrical flanks is governed by the Laplace law (Manegold 1953; Kann 
1989) 

O" 
Pc -- PL - -  - -  [1] 

- -  ~ ' c '  

where subscripts G and L mean gas and liquid phase correspondingly; tr is the surface tension 
coefficient; rc is the curvature radius of the side surface of the channel related to its cross-section 
S by the elementary dependence following from simple geometrical considerations 

7Z 
rc = fllx/~; fl 2= v/r~ -- 2" [2] 

Eliminating the intermediate variable rc from [1] and [2] and varying the expression obtained, one 
can obtain the relationship between pressure variation in the channels 6PL, gas pressure disturbance 
fiP~ in the bubbles and cross-section perturbation 6S: 

a 6 S  
6 P c  - 3PL = --  2 f l ~ S x / ~ .  [3] 

The characteristic times of pressure change can be related in the gas phase (it is defined by gas 
compressibility and, correspondingly, by the sound velocity in the gas) and in the liquid (to a 
combination of capillary effects, gravitational forces and liquid viscosity). These dependences lead 
to the conclusion that pressure equalization time in the foam bubbles is negligibly small in 
comparison with other characteristic times (Goldfarb e t  al .  1988; Goldfarb 1991). It allows us to 
use the limit 6PG--~ 0 in [3] and to obtain the expression for the liquid pressure disturbance t ~ P L  

dependent only on channel cross-section variation 6S (in fact this means introducing the 
incompressible gas approximation Cc--,  ~ and 6Pc---' 0); thus: 

tr 6 S  
3 P L -  2fl~ Sx//S" [4] 

Taking into account the specifics of liquid flow in foam channels (the flow takes place in channels 
with the cross-section in the form of the Plateau triangle; absolute values of S are small; it is 
suggested that the liquid sticks at the interphase boundary), the equation of liquid motion in the 
channel can be written in the form analogous to that of the Darcy equation: 

where pL is liquid density; r/L the dynamic viscosity of the liquid; UL the average liquid velocity 
in channel; ~ the vector of gravitational force; ~ the direction of an arbitrary channel; fie a numerical 
coefficient dependent on the Plateau triangle form; the angular parentheses denote averaging of 
the liquid motion directions in the chaotically oriented channels. 

Let us direct the axis x along the vector of gravitational field ~. On the basis of the data obtained 
by Leonard & Lemlich (1965), the value 49.1 can be obtained for parameter fiE (its value is defined 
by the form of channel cross-section, for example, for an ideal circle f12 = 8n, for an ideal triangle 
f12 = 20x/~ = 34). As a result of averaging liquid motion directions, a common multiplier 1/3 is 
obtained in the right-hand side of [5]. 

Writing the continuity equation for liquid flow in the Plateau-Gibbs channel in the form 

0S O(SUL) 0 [6] 
-~- + OX = 
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and considering [4]-[6] together, an evolution equation can be obtained for S. In dimensionless 
form this equation may be rewritten as follows: 

tr S x t x/~o. 2gpL So 
= " = , C ,  = . [ 7 ]  X--4fllpLgSo' S+-~-S00' ~ = %//So; "c TO' to c, 3fl2t]L 

Here So is the cross-section of the undisturbed Plateau-Gibbs borders (cross-section of the channels 
in the region of the foam which is not reached yet by the perturbation under consideration). 

Equation [7] describes microscale liquid flow in foam under the influence of gravitational and 
capillary forces. The foam practitioner is used to deal with equations describing the foam drainage 
process in terms of continuous parameters of the foam, such as density or foam expansion factor. 
For the transition from the microscale description to the homogeneous one, functional relations 
should be found between foam density pf and channel cross-section S. Let us present a short 
derivation of the equation analogous to [7] in terms of continuous parameters. The elementary 
relation from the theory of two-phase media connecting foam density pf, gas and liquid densities 
pG, pg and volumetric phase contents E~, EL reads 

pf : DLEL + pOEO. [8] 

According to the assumption made about gas incompressibility and taking into account the 
suggestion that the liquid is placed in Plateau-Gibbs borders only after variation of [8], one can 
easily obtain the relationship between foam density variation 6pf and channel disturbance 6S: 

S+ = ¢$Pf 
pL(1 -- eG)eo -- P+" [9] 

It is obvious that after substituting [9] into [7] we obtain an equation in a form absolutely identical 
to [7]: 

0---~- + p+ ~ = Z p~2 . [10] 

Here 

a Pf t 
X = 4fllpLgSo' p+ (1 -- 0tO)~opL Z = TO" 

This unexpected result proves the equivalence of the two different approaches--microscale and 
homogeneous. The physical explanation of this equivalence is apparent in the model assumptions 
made above• Namely, gas in foam bubbles is assumed incompressible and the foam density change 
is caused by liquid flow in the Plateau-Gibbs channels only. In the paper, the authors will deal 
with the equation describing foam drainage process in the form [7]. 

3• RESULTS AND DISCUSSION 

Equation [7] contains two non-linear components, one (S+S+~) responsible for hydrodynamic, 
and the other (S~2S+¢)~ for diffusional nonlinearity. The relative role of each of these two 
mechanisms is defined by the value of the dimensionless parameter Z, which has the physical sense 
of the ratio of energy densities ratio, being stored by the liquid in a Plateau-Gibbs channel under 
the influence of two forces with different physical origin: capillary and gravitational (Goldfarb 
1991). Parameter X may have values both exceeding and less than unity on the dependence of  foam 
structural parameters (expansion factor and dispersity). So one may consider two asymptotic limits: 
X << 1, X >> 1. Let us describe these cases briefly [a more detailed analysis is presented in an earlier 
publication by Goldfarb et al. 1988]. 
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The case Z << 1 corresponds to the so called "spherical foam". This kind of foam has spherical 
bubbles, and the structure of the foam is similar to that of a liquid-bubble mixture with a high 
gas content. This case is rather trivial--diffusional non-linearity plays an insufficient role and the 
original [7] may be linearized and reduced to the Burgers' equation (Nakoryakov et al. 1994): 

~?S+ OS+ 02S+ [11] 
cat + S+ a¢ - S~:° Z ~3~ 

whose properties are well investigated. Remembering that S+ ~ S+0 (1 + S,), where S, << 1, S+0 = 1, 
[11] can be written in the form: 

aS, _ aS, _ aS, #:S, [12] 

Analytical approaches to solving [12] are now well known and a travelling wave solution for it (so 
called Taylor's shock wave) reads 

S, = ( V - S + o ) {  1 -  th[-(V-~ 2~--+oS+°)(~ - V~)]. } [13] 

and describes kinematical wave of the liquid in spherical foam. 
The case Z >> 1 corresponds to a polyhedral foam with a high expansion factor. Due to the strong 

Laplace forces, gravity force can be neglected, and [7] can be reduced to the non-linear parabolic 
form below, which has some interesting analytical solutions that were discussed by Goldfarb et al. 
(1988): 

,,4, 

Equations of a similar type are obtained for the propagation of heat in a medium whose properties 
are power functions of the temperature; these are used here. In the terms of our problem, the 
solution in the travelling wave form reads as follows 

V(VS+ + C , ) + ~  arctg~ ~ / C T J = }  ( ¢ - r V )  + c2, [15] 

where C ,  (i = 1,2) are the constants of the integration. 
Another type of solution for the approximation [14] which was obtained in an earlier work of 

the authors (Goldfarb et al. 1988), was connected with the problem of liquid absorption into the 
foam. It was assumed that on the boundary of the foam, at the point x = 0, a layer of liquid of 
mass M is concentrated and the structure and dynamics of the capillary absorption wave were 
found. The problem was solved with the help of the method suggested by Landau & Lifshits (1989) 
for the problem of heat transfer in a medium with non-linear properties. The similarity of the 
equations testifies to the similarity of the physical phenomena. For example, Landau & Lifshits 
draw the attention of the reader to the fact that the wave propagation velocity is determined not 
only by the parameter X but also by the initial conditions. In the problem in question, not only 
the propagation velocity of the stationary wave, but also its very existence depend on the set of 
initial and boundary conditions. 

Within the framework of our paper, we restrict ourselves to the general case when the parameter 
X ~ 1. Let us investigate [7] in this approximation and try to find the travelling wave solution for 
it. In fact this means assuming the simplest automodel dependence of unknown S+ on a new 
variable (. This variable represents the combination of coordinate ~ and time z in the form 
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= ~ - Wz ,  where W is the velocity of travelling wave propagation. After substitution of the new 
variable ( [7] may be written in the form 

dS+ d (x//~+ _~+ ) [16] - w  + s + - d - C  = z 

Now we will apply the traditional methods of qualitative analysis (Arnold 1992) to [16]. Let us 
introduce the new variables 

du [17] u 

and reduce [16] to a system of two non-linear differential equations which reads (it is suggested 
that the trivial solution u = 0 is not of interest and is not considered) 

du 
-~  = p [18a] 

d p _  up 2 f  p W  [18b] 
d~ X u Zu " 

The problem is to define the behavior of the trajectories of system [18] on the phase plane with 
coordinates p - u, i.e. to investigate qualitatively the behavior of the travelling wave solution of 
[71. 

The first integral of [18] may be written in the following form: 

du u 2 W Cu 
= [19] d~ - P(U) 4X 2X b u 2, 

where Cu is the constant of integration. On the basis of this integral, the phase diagram 
schematically presented in figure 2 can be built. Let us consider, for example, the trajectory AB. 
Point A corresponds to the limit ~ ~ - oo. It is the initial point for the travelling wave. The arrow 
is pointing in the direction of wave motion, to the other limiting point B that corresponds to the 
case ~ ----, + oo. It can be seen that monotone function variation takes place. It shows no jumps 
and discontinuities. One can see that the function u(O has monotonical character and varies from 
the limit value in point A, u(~)¢~_ ~ = u_ up to any (non-zero!) value in point B, u(O¢-+ ~ = u+. 
It is very important to underline that the qualitative analysis of system [18] leads us to the 
conclusion that the value of function u(O [and, consequently, of s+(O] cannot reach a zero value 
under any value of automodel variation (, or under any combination of structural foam parameters 
and boundary conditions of the problem. This conclusion follows from the phase plane analysis 

'p 

t [  

Figure  2. Phase diagram of the system [18]. 
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of system [18] trajectory behavior, presented in figure 2. An analytical investigation of integral [19] 
produces the same result more strictly: V (u(() > E > 0. 

Let us analyse the solution of [7] in the travelling wave form. After substitution of the new 
variable (, [7] may be written in the form [16]. We will integrate [16], taking into account the 
qualitative analysis results, particularly the impossibility of S+ (() being equal to zero. For this aim 
we will integrate [16] under the assumption of the presence of two boundary non-zero conditions 
on each of two infinities 

S+(()¢~ ® = S £ ,  S + ( ( ) ~ + ® = S  +, S£ > S  + > 0 .  [20] 

The first integral of [16] has the following form: 

1 z d 
- W S +  + ~ S+ - xS~:-d-~ S+ = C,, [21] 
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Figure 3. Dimensionless density p÷ dependence on dimensionless time ~ in equal time intervals in the form 
of exact solution [23] of the original [10] for various boundary conditions (as was mentioned, [7] and [10] 
have identical form). The graphs p÷ (O were obtained from [23] by numerical calculation under different 
left boundary conditions (in accordance with the assumptions made, the left one is always equal to 1). 
Boundary conditions are as follows: A - p£ = 3; p~+ = 1; B -  p£ = 5; p~+ = 1; C -  p£ = 8; p~+ = I. 

where C, is a first in tegrat ion constant .  I t  m a y  be easily defined by considering [21] in the limit 
--~ - o o .  In  this case, S+: = 0 and the following expression for  Cl m a y  be obtained:  

c ,  = - w s z  + ½ ( s z ) 2 .  [221 

After  subst i tut ing the expression [22] for  C, into [21], dividing the variables and integrat ing the 
expression obtained,  the following dependence ( (S+)  is obtained:  

Z 1 {x/ ln[ - -C+C2-W I}' t231 

where (72 is a second integrat ion cons tan t  (the phase  o f  the solution). 
At  first glance, [23] suggests tha t  no explicit dependence o f  the unknown  S+ on variable ( can 

be obtained.  Detai led analysis confirms this conclusion. At  the same time, the implicit  dependence 
S+ (( )  shows the existence o f  a solut ion for  [7] in the fo rm o f  a travelling wave p ropaga t ing  with 
velocity W. F o r  its definition, one should consider  the behav ior  o f  each o f  the elements on the right 
o f  [23] in the limiting cases ( ~  _ oo. Obvious ly  the first o f  the logar i thms provides for  the 
fulfilment o f  the left b o u n d a r y  condi t ion for  ( --~ - oo, as much  as in this case S+ ( 0  --~ S£ and, 
consequent ly,  the following condi t ion is valid: 

I n  - - .  

The fight  b o u n d a r y  condi t ion (S~ + ) does not  enter  explicitly into expression [23], but ,  nevertheless, 
it is o f  fundamen ta l  impor tance  for  the definitive solut ion o f  the p rob lem considered. To  fulfil the 
second b o u n d a r y  condi t ion (for ( --~ + oo), it is necessary for  the second logar i thm in the fight side 
o f  [23] to app roach  negative infinity ( - o o ) .  This is possible only in the case when the 
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numerator of  the decimal in the logarithm expression tends to zero. Inasmuch as ( ---, + oo results 
in S+(()--* S~ + , this condition is equivalent to the following 

= ~ = x / 2 W -  S£ .  [241 

From the latter expression, it follows that 

W -  $5 + So~ + 
2 [25] 

Hence, although the value S~ + is not included explicitly in solution [23], it has an effect on it 
implicitly, through the travelling wave velocity W. Some graphics of  the dependence S+(~) for 
various combinations of left boundary condition are presented in figure 3 (it is obvious that, 
according to the definition of the variable S+(~), its right boundary condition S~ + is always equal 
to 1). 

A remark is in order: it was not essential to analyse the behavior of  each term on the right-hand 
side of  [23] to establish a connection between wave velocity and boundary conditions. It was 
sufficient to use the fact that [7] belongs to the wide class of non-linear differential equations of 
the type: 

oO OQ 0 /o"O mx~ 
O--i- + Q O---x = O--x r~--5-~-x" ) '  m e R, n = 2k - 1, k e N, [26] 

where F(y)  is an arbitrary rational function. The universal relationship [25] between the travelling 
wave (i.e. solution of  [26], velocity and boundary conditions in the limits ~---, _+oo are the 
fundamental features of this equation class. It is easy to establish this relationship if an expression 
of  type [21] is written for each of  the limits ~ --, _+ ~ ,  the integration constant C1 is excluded and 
it is taken into account that all derivatives in these regions of ~ amounts are equal to zero. 

Let us relate the cumbersome implicit expression in [23] and the fine analytical expression having 
the form of the simple explicit function S+(~) derived by Goldfarb et al. (1988) as a solution of 
[7] and obtained independently by Verbist & Weaire (1994): 

L s+ (~) = o, when ~ > 0 [27] 

In the pure mathematical sense, [27] is not a solution of the original differential equation [7], but 
it is very close to it. The form [27] is very simple and, possibly, may be used in practice for 
approximate calculations, but the limits of its applicability should be defined in every specific case. 
It is easily comprehended that the origin of [27] is connected with the assumption of equality to 
zero for the first integration constant in [21]. This condition leads automatically to the definite 
relationship between wave velocity W and boundary condition S£ ( W  = S£/2) ,  and, consequently, 
to the same automatic equality to zero of  the right boundary condition S + (it follows from [25]). 
In terms of  [23], it means that the second logarithm disappears in the right side (a zero multiplier 
emerges before it). At the same time, as was mentioned above, qualitative analysis results in the 
conclusion that [7] cannot have a zero boundary condition in the limit ~ ~ + oo. The unique case 
of  the existence of  condition disruption of  the [7] solution at point S+ = 0 is the chief cause for 
this contradiction. In turn, this disruption is due to the presence of  a root singularity in the right 
side of  [7]. This unexpected fact may be better explained and easily understood on the previous 
level of  the problem, on the level of  physical problem formulation. It is easily seen from [3] and 
[4] that all further relationships are based on these two required non-zero boundary conditions 
(S + = E > 0). In other words, the condition S + = 0 corresponds to an assumption cr = 0, which 
is not physically possible. 

One should mention another feature which follows from the difference between [23] and [27]. 
It is the definition of  the wave propagation velocity W. The conclusion made from the analysis 
of [27] leads to a velocity value smaller than may be obtained from the analysis of exact solution 
[23] of  the original [7] (it is assumed that the left boundary condition S£ is the same for both cases). 
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Figure 4. Drainage wave propagation in equal time intervals. Continuous line, in accordance with exact 
solution [23]; dashed line, in accordance with approximate expression [27]. The identical left boundary 
condition (p£ = 10) was used for numerical modelling; the right boundary condition was: p~+ = 1 for [23], 

p~+ = 0 for [27]. 

This conclusion is illustrated by figure 4, containing the results of  numerical calculations. The 
profiles of  the propagating front of  drainage waves in equal time intervals are presented in this 
figure. It can be easily seen that the wave described by the exact solution [23] propagates more 
quickly than the one described by expression [27] (as was already mentioned above, it is assumed 
that the left boundary condition So~ is the same for both cases). Taking into account finite liquid 
content right to the wave front leads to a more exact expression for the profile velocity. In turn, 
this leads to changes in the drainage time calculations and obviously the expressions obtained in 
the present appear accomplish this more exactly than the previous ones. 

4. CONCLUSION 

In conclusion the authors would like to draw attention to a discussion of  the physical basis for 
the occurrence of  an existence condition disruption of  the solution at point S÷ = 0. Moreover, it 
is well known that in most physical problems it is possible to extend the solution to a region where 
formal conditions of  existence occur already ruptured. The Laplace law [ 1] connecting the pressures 
under and on the convex interphase boundary surface with the relationship between the curvature 
radius rc of  the Plateau-Gibbs channel side surface and its cross-section S [2] are responsible for 
the existence of  a root singularity. It is easy to see that the Plateau triangle (which, in fact, is the 
object of  Lobachevsky's geometry, Languitz 1965) has no possibility to have zero area by virtue 
of  the specifics of  the triangle form, as the curvature radius of interphase gas-liquid boundary 
surface cannot be equal to zero. Both of  these parameters may have small, but finite values. This 
is conditioned by the peculiarities of SAS (surface active substance), monomolecular layers 
interacting with each other (in the vicinity of  the interphase surface) and with the liquid contained 
in films and channels (surfactant molecules have dipole form; they are placed at the boundary 
surface in such a way that their hydrophilic poles face the liquid and the hydrophobic ones face 
the gas). So there is always some quantity of  liquid in undisturbable regions of the Plateau-Gibbs 
channels (in that part of the foam where a wave propagating with velocity W does not yet carry 
a perturbation. And in the authors'  opinion, it is of basic importance to take into account the 
physical nature of  the foam structure has provided the fulfilment of  the condition S÷ (~) > E > 0 
V~. It is wrong to use condition [25] for the positive ~, even in the case when the strong inequality 
S+~/S; << 1 is fulfilled and it seems natural to put S~ + approximately equal to zero for the solution 
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of the physical problem. This conclusion illustrates an extremely interesting aspect of liquid flow 
physics in such a unique medium as gas-liquid foam. 

Unfortunately, the number of experimental data available to the authors is very limited. This 
is explained by the extremely complex precise experiments needed to measure the structure of the 
drainage wave front. This fact is illustrated by the recent measurements conducted by Weaire et al. 
(1995). According to Weaire (1995), the experiments conducted were preliminary and had low 
accuracy. However, during the detailed analysis of their data, we came to the conclusion that the 
profile of the drainage wave under the conditions of forced drainage corresponds qualitative to 
the solution found and discussed in the present and previous papers devoted to this problem. 
Moreover, the wave's profiles registered by Weaire et al. (1995) demonstrate the presence of a 
plateau in the right-hand side of the picture where the wave has not yet reached, which is predicted 
in the present paper. We hope that in the framework of our collaboration, an opportunity will 
appear to measure the needed parameters more precisely, to conduct a quantitative comparison 
between measurements and the theory developed and to improve our understanding of the physical 
processes in one of the most complex objects in the mechanics of multiphase media. 
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